PARAMETRIC DESIGN OF A SOLID DRYER FOR PROCESSING CASSAVA STARCH USING SIMPROSYS 2.0 PROCESS SIMULATION SOFTWARE

D. Abutu1*, A. O. Ameh2, S. M. Waziri2
1Department of Chemical Sciences, Federal University Wukari, PMB 1020, Taraba State, Nigeria
2Department of Chemical Engineering, Ahmadu Bello University Zaria, Nigeria
*Corresponding author: davidabutu@fuwukari.edu.ng

Received: December 04, 2016 Accepted: February 15, 2017

Abstract: Natural sun drying is one of the most common ways to preserve agricultural products. Many agricultural products are spread on the ground to be dried by sun and wind. This results to poor quality products due to contamination and high loss caused by uneven or incomplete dehydration. Parametric design of a drying system for processing cassava starch was carried out using Simprosys 2.0 Process simulation package specifically designed for drying systems. The units considered in this design includes; the air filter, blower, heater unit, solid dryer, input feeder, cyclone and product collector, a process flow diagram consisting of all the units was assembled. The drying system was designed on the basis of 20 kg/h of wet cassava starch with moisture content of 40%. From the results generated, the air particle loading for the air filter and filter area were found to be 0.038 kg/h and 0.267 m² respectively, the blower suitable for the drying operation has a total discharge pressure of 3.296 kPa and power output of 0.505 kW. The heating unit has a total heating duty of 11.447 kW. Also from the process simulation results, for all range of temperature between 90°C to 120°C, an air flow rate of 450 kg/h has the highest values of drying efficiencies averaging 83.2%. Considering a circular transverse section, the suggested dryer diameter and length are 0.296 m and 2.366 m, respectively. Therefore, a total of 11 minute with an optimum temperature of 120°C can reduce the moisture content of cassava starch from 40 % wet basis to equilibrium moisture content of 10 % wet basis suitable for storage.

Keywords: Design, moisture content, process simulation, simprosys, solid dryer

Introduction
Food dehydration is a traditional method for food preservation, removal of water from food material is usually accomplished by thermal evaporation, which is an energy intensive process, about two thousand five hundred (2500) joules of energy is required to evaporate one gram (1 g) of water. Diverse drying equipment and processes are used for the various food products. Food dehydration is a heat and mass transfer process that requires a significant amount of energy (Maroulis et al., 2003).

Cassava is currently the largest producer of Cassava, amounting to about 34.8 million metric tons per annum, most of which is converted to starch (Maziya-Dixon, 2010). Production of starch in the country is currently at 20 million tonnes per annum and demand estimated at 230 million tonnes per annum (Maziya-Dixon, 2010). Though there are local producers of starch in country, but the demand for starch is far beyond production rate. One of the major unit operations in cassava starch processing is drying. Drying cassava starch locally by exposing the starch material to direct sunlight exposes it to atmospheric contaminant and Pest infestation, therefore the need to mechanize the process to encourage commercial production and reduce contamination caused by direct exposure to sunlight (Babalís et al., 2006).

Simprosys was used to carry out detailed design of the drying operation based on the physico-chemical properties of the wet cassava starch. Simprosys was developed by Simprotek Corporation, a Windows-based process simulator specifically designed for drying can simulate almost any drying and evaporation related processes. Parameters generated from simprosys simulation result will aid the fabrication of the solid dryer. With the availability of this drying device; there will be improved rate of drying leading to better product quality and the cost associated with the importation of a mechanical dryer abroad will be significantly reduced.

Material and Method
List of materials
Simprosys simulation software package (version 2.0)
Computer system (2Gigahite Ram and 250HDD)

Design model equations for drying processes
Over a small interval of time, dt, a certain amount of moisture evaporates from the cassava starch into the drying air, resulting in change in the humidity ratio. The moisture balance can be written as (Strumillo et al., 2007):

\[W_f = R \left(m_i - m_f \right) + w_{in} \] \hspace{1cm} (1)

Where:
\[W_f \] = exhaust humidity ratio of air kg water/kg dry air
\[W_{in} \] = inlet humidity of air kg water/kg dry air

The exhaust air temperature can be determined using the equation below (Strumillo et al., 2007):

\[T_p = \frac{C_o T_{in} + W_{in} (h_{f2} + C_o T_{in}) - W_f h_{f2} + R C_{p} \Theta_{in}}{C_o + W_{in} C_f + R C_{p}} \] \hspace{1cm} (2)

Where:
\[T_{in} \] = exhaust air temperature °C
\[T_{in} \] = inlet air temperature °C
\[\Theta_{in} \] = inlet feed temperature
\[C_o \] = specific heat of dry air kJ/kg°C
\[C_f \] = specific heat of water vapour kJ/kg°C
\[C_{po} \] = specific heat of moist cassava starch kJ/kg°C
\[H_{po} \] = latent heat of moisture evaporation kJ/kg

At inlet, the grain temperature is equal to the ambient air temperature (Strumillo et al., 2007)

Drying kinetics
The drying kinetics of starch could adequately be described by a zero order reaction

\[\frac{C(t)}{C_o} = k t \] \hspace{1cm} (3)

Where \(C(t) \) is the mass flow rate of dried starch (kg/h) at time \(t \) (s)
\(k \) is the rate constant (s⁻¹) and \(t \) is the drying time (s).

The rate constant was related to the depth and drying temperature through the correlation (Sachin et al., 2011):

\[k = -30.34026 + 3.1920113 H_{bed} - 0.109836 H_{bed}^2 \exp(-\frac{1518.626}{T}) \] \hspace{1cm} (4)
Parametric Design of a Dryer, Using Simprosys 2.0 Software

Where $H_{bed} =$ static bed depth (cm)
$T (K)$ is the drying temperature
From the equation, drying rate can be increased by increasing the bed temperature or reducing the bed depth.

Determination of dryer cross-sectional area
In design mode, the required solids throughput F, and the inlet and outlet moisture content X_l and X_o, are known, as is the ambient humidity Y_l. If the inlet gas temperature T_{cl} is chosen, the outlet gas temperature T_{co} and humidity Y_o can be found using constant enthalpy lines on psychometric chart, Cross sectional area of the dryer can be determined from the expression (Sachin et al., 2011):

$$A = \frac{G}{\rho_{cl} U_c} = \frac{F}{\rho_{cl} U_c \left(Y_l - Y_o\right)}
C = \rho_{cl} U_c A = \text{gas flow rate}
F = \text{particle throughput}
U_c = \text{gas velocity}
\rho_{cl} = \text{density of gas}
\frac{M_1}{M_2} = \text{initial weight before drying}
M_2 = \text{final weight after drying.}
X = \text{moisture evaporation rate}
W = \text{weight of water removed.}

Rate of water /moisture removal
The estimation of the amount of water to be removed from the solid material is obtained using the expression below (Mujumdar, 1995).

$$X = \frac{W \left(M_1 - M_2\right)}{\left(100 - M_2\right)}
\text{(6)}
\text{Where:}
M_1 = \text{initial weight before drying}
M_2 = \text{final weight after drying.}
X = \text{moisture evaporation rate}
W = \text{weight of water removed.}

The process flow sheet containing the air filter unit, the blower, the heating unit, the solid dryer and the cyclone was assembled as shown in Fig. 1.

Input Parameters
The input variables were based on the assumption as stated below for the feed:
Feed type: Cassava Starch
Feed moisture content = 40 % wet basis
Feed temperature = 27°C.
Product temperature = 50°C
Product moisture content = 10 % Suitable for storage
Specific heat of the absolute cassava starch material = 1.26 kJ/kg°C
Mass flow rate of cassava starch = 30 kg/h
Drying air was assumed to have the following laboratory conditions at the start of the experiment:
Initial pressure = 101.3 kPa
Initial temperature (dry-bulb) = 20°C
Initial absolute humidity = 0.009 kg/kg of air
Mass flow rate of air for solid material between (400 kg/h - 700 kg/h)
Drying air goes through an air filter first. Pressure drop in the air filter was assumed to be 0.3 kPa. Assuming a dust volume concentration in the air filter is 0.1 g/m3, collection efficiency of the cyclone is 95%. The process flow diagram for the above situation is shown in figure 1; variables to be determined in this design includes the drying air velocity, the volumetric airflow rate of air and the drying temperature.

Results and Discussion
Simulation step for the fan
One of the design variable determined was the volumetric airflow rate of air necessary for the drying operation, reviewing Sokhansanj and Jayas (2007), the recommended mass flow rate of air necessary for safe drying of starch products ranges from 700 kg/hr to 400 kg/hr. To determine the range of air velocity, all process variables were set constant with W_{bw} varying from 400 to 700 kg/h and its influence compared to the air velocity values. To do this calculation, the software Simprosys 2.0 was used as shown in Fig. 2. This Figure shows how the software works. In this dialogue window, the software shows the required input process variables in a white background box, and the output values presented in the grey material. The powdered feed then passes through a cyclone where entrained dust material will be collected. Collection efficiency of the cyclone is assumed to be 95%. The process flow diagram for the above situation is shown in figure 1; variables to be determined in this design includes the drying air velocity, the volumetric airflow rate of air and the drying temperature.
Parametric Design of a Dryer, Using Simprosys 2.0 Software
colour box. The column Gas 1 represents the ambient air
going in the fan, and the Gas 2 column shows the process
variables of the air coming out from the fan. The result
obtained from this variation of the air flow rate compared
with air velocity is shown in Fig. 2, for an air flow between
400 to 700 kg/h, air velocity result is between 19.934 to
34.885 m/s, which are the recommended range to dry starch
materials. Fig. 2 shows the parameters generated for the
blower, choosing a rectangular outlet cross section, the
suggested air outlet diameter is 7.80 cm, and the air velocity
is 22.426 m/s, while the power rating for the fan was
evaluated as 0.505 kW. Fig. 3 also show the relationship
between the air velocity and mass flow rate of air for the
drying system.

![Fig. 2: Dialogue window for the blower showing input/output variables](image1.png)

![Fig. 3: Air flow rate versus gas velocity at the fan](image2.png)

Table 1: Summary of simulation results at a fixed temperature of 90°C

<table>
<thead>
<tr>
<th>Mass flowrate of air (kg/h)</th>
<th>Velocity of air (m/s)</th>
<th>Thermal efficiency (%)</th>
<th>Specific heat consumption (kJ/kg)</th>
<th>Moisture evaporation rate (kg/h)</th>
<th>Heater Heat Duty (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>19.934</td>
<td>111.70</td>
<td>2151.645</td>
<td>11.818</td>
<td>6.793</td>
</tr>
<tr>
<td>450</td>
<td>22.426</td>
<td>99.90</td>
<td>2420.60</td>
<td>11.818</td>
<td>7.643</td>
</tr>
<tr>
<td>500</td>
<td>24.918</td>
<td>90.30</td>
<td>2689.556</td>
<td>11.818</td>
<td>8.492</td>
</tr>
<tr>
<td>550</td>
<td>27.410</td>
<td>82.40</td>
<td>2958.511</td>
<td>11.818</td>
<td>9.341</td>
</tr>
<tr>
<td>600</td>
<td>29.901</td>
<td>75.80</td>
<td>3227.467</td>
<td>11.818</td>
<td>10.190</td>
</tr>
<tr>
<td>650</td>
<td>32.393</td>
<td>70.20</td>
<td>3496.422</td>
<td>11.818</td>
<td>11.039</td>
</tr>
<tr>
<td>700</td>
<td>34.885</td>
<td>65.30</td>
<td>3765.378</td>
<td>11.818</td>
<td>11.888</td>
</tr>
</tbody>
</table>

![Fig 4: Dialogue window showing Simulation results for the heater](image3.png)

Simulation step for the heater
The heating unit is meant to heat up the air flowing at 450
kg/hr from initial ambient temperature of 20°C to an optimal
drying temperature of 120°C. Fig. 4 shows the dialogue
window for the heater, the heating duty for the heater was
evaluated as 11.447 kW.

Simulation Step for the Dryer
So far, the range of the design variables (air velocity, drying
air temperature, and Air mass flow rate) has been found;
however to determined their optimal values, it is necessary to
observe their behaviour compared to a performance index,
such as thermal efficiency.
To do this, a simulation of the process is run, in which
process variables are set constant, then each of the design
variables are varied and their influence on the thermal
Parametric Design of a Dryer, Using Simprosys 2.0 Software

efficiency for the dryer is observed. Fig. 5 shows the dialog window operating the dryer simulation software, the columns wet cassava starch and dry cassava starch show the values of the process variables for the cassava starch to be dried, before and after passing through the dryer, respectively. The columns named Gas 4 and Gas 5 are respectively for the heated air coming from the heater and the drying air exiting the dryer. Fig. 6 shows the performances indexes for the dryer (thermal efficiency, moisture evaporation rate, specific heat consumption) that are calculated by the software for the given conditions.

Fig. 5: Dialogue window showing simulation results for the dryer

Tables 2, 3 and 4 show the variation of air temperature with thermal efficiency, heater heating duty and moisture evaporation rate. From Figs. 6 and 7, it can also be seen that the thermal efficiency decreases as the drying air temperature rises, from this behaviour, it can be deduced that the most suitable temperature for the drying process is in the range proposed and is dependent on the material temperature requirements for drying. To determine an exact value, practical experimentation is required.

Table 2: Summary of simulation results at a fixed temperature of 100°C

<table>
<thead>
<tr>
<th>Mass flowrate of air (kg/h)</th>
<th>Velocity of air (m/s)</th>
<th>Thermal efficiency (%)</th>
<th>Specific heat consumption (kJ/kg)</th>
<th>Moisture evaporation rate (kg/h)</th>
<th>Heater Heat Duty (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>19.934</td>
<td>97.10</td>
<td>2493.175</td>
<td>11.818</td>
<td>7.920</td>
</tr>
<tr>
<td>450</td>
<td>22.426</td>
<td>86.80</td>
<td>2804.822</td>
<td>11.818</td>
<td>8.909</td>
</tr>
<tr>
<td>500</td>
<td>24.918</td>
<td>78.50</td>
<td>3116.459</td>
<td>11.818</td>
<td>9.899</td>
</tr>
<tr>
<td>550</td>
<td>27.410</td>
<td>71.70</td>
<td>3428.116</td>
<td>11.818</td>
<td>10.889</td>
</tr>
<tr>
<td>600</td>
<td>29.901</td>
<td>65.90</td>
<td>3739.763</td>
<td>11.818</td>
<td>11.879</td>
</tr>
<tr>
<td>650</td>
<td>32.393</td>
<td>61.00</td>
<td>4051.410</td>
<td>11.818</td>
<td>12.869</td>
</tr>
<tr>
<td>700</td>
<td>34.885</td>
<td>56.80</td>
<td>4363.057</td>
<td>11.818</td>
<td>13.859</td>
</tr>
</tbody>
</table>

Table 3: Summary of simulation results at a fixed temperature of 110°C

<table>
<thead>
<tr>
<th>Mass flowrate of air (kg/h)</th>
<th>Velocity of air (m/s)</th>
<th>Thermal efficiency (%)</th>
<th>Specific heat consumption (kJ/kg)</th>
<th>Moisture evaporation rate (kg/h)</th>
<th>Heater Heat Duty (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>19.934</td>
<td>86.00</td>
<td>2834.706</td>
<td>11.818</td>
<td>9.047</td>
</tr>
<tr>
<td>450</td>
<td>22.426</td>
<td>76.90</td>
<td>3189.045</td>
<td>11.818</td>
<td>10.178</td>
</tr>
<tr>
<td>500</td>
<td>24.918</td>
<td>69.60</td>
<td>3543.383</td>
<td>11.818</td>
<td>11.308</td>
</tr>
<tr>
<td>550</td>
<td>27.410</td>
<td>63.50</td>
<td>3897.721</td>
<td>11.818</td>
<td>12.439</td>
</tr>
<tr>
<td>600</td>
<td>29.901</td>
<td>58.40</td>
<td>4252.059</td>
<td>11.818</td>
<td>13.570</td>
</tr>
<tr>
<td>650</td>
<td>32.393</td>
<td>54.00</td>
<td>4606.398</td>
<td>11.818</td>
<td>14.701</td>
</tr>
<tr>
<td>700</td>
<td>34.885</td>
<td>50.30</td>
<td>4960.736</td>
<td>11.818</td>
<td>15.832</td>
</tr>
</tbody>
</table>

Table 4: Summary of simulation results at a fixed temperature of 120°C

<table>
<thead>
<tr>
<th>Mass flowrate of air (kg/h)</th>
<th>Velocity of air (m/s)</th>
<th>Thermal efficiency (%)</th>
<th>Specific heat consumption (kJ/kg)</th>
<th>Moisture evaporation rate (kg/h)</th>
<th>Heater Heat Duty (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>19.934</td>
<td>77.30</td>
<td>3176.237</td>
<td>11.818</td>
<td>10.175</td>
</tr>
<tr>
<td>450</td>
<td>22.426</td>
<td>69.20</td>
<td>3573.267</td>
<td>11.818</td>
<td>11.447</td>
</tr>
<tr>
<td>500</td>
<td>24.918</td>
<td>62.50</td>
<td>3970.296</td>
<td>11.818</td>
<td>12.719</td>
</tr>
<tr>
<td>550</td>
<td>27.410</td>
<td>57.10</td>
<td>4367.326</td>
<td>11.818</td>
<td>13.991</td>
</tr>
<tr>
<td>600</td>
<td>29.901</td>
<td>52.50</td>
<td>4764.356</td>
<td>11.818</td>
<td>15.263</td>
</tr>
<tr>
<td>650</td>
<td>32.393</td>
<td>48.60</td>
<td>4888.385</td>
<td>11.818</td>
<td>16.535</td>
</tr>
<tr>
<td>700</td>
<td>34.885</td>
<td>45.20</td>
<td>5558.415</td>
<td>11.818</td>
<td>17.807</td>
</tr>
</tbody>
</table>
Another performance index of the dryer that can be useful to analyse the dryer behaviour is the heat consumption, as Fig. 8 illustrates the specific heat consumption in the dryer increases as air flow rate is higher, this shows that for these drying conditions, increasing air flow means that more heat is used to evaporate each kilogram of water in the material, thus thermal efficiency of the dryer decreases. The moisture evaporation rate is the amount of moisture that is necessary to evaporate in one hour to reach desired final humidity in the product, thus it is only affected by the mass of fruit placed in the dryer, and the initial and final levels of humidity that is seek to be reached, this means that a variation in air flow rate, or the drying air temperature does not affect the moisture evaporation rate.

Once the drying air velocity has been determined, it is possible to calculate the drying chamber dimensions using the Simprosys 2.0 software, these tool allows selection of the cross section type of the dryer chamber and determination of its dimensions, considering a circular transverse section, the dryer chamber diameter and length are 0.296 and 2.366 m, respectively as shown in Fig. 9.

Conclusion
The following conclusions were deduced after the design: A solid dryer for processing cassava starch was successfully designed using Simprosys 2.0 simulation software package using basic physico-chemical properties of cassava starch. The quantity of heat required to heat air flowing at 450 kg/hr from initial ambient temperature of 20°C to drying temperature of 120°C is 11.447 kW. The length and diameter of the dryer were evaluated as 2.366 m and 0.296 m, respectively. The dryer was able to dry cassava starch from an initial moisture content of 40% to a moisture content of 10% suitable for storage.

Acknowledgement
The authors wish to acknowledge the management of Simprotech Corporation for releasing one month free licence of the software Simprosys to enable us carryout the design.

References
Babalis SJ, Papanicolaou E, Kyriakis N, Belessiotis VG 2006. Evaluation of thin-layer drying models for describing...