
FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 518 – 522

518

 SOFTWARE DEFECT PREDICTION: EFFECT OF FEATURE

SELECTION AND ENSEMBLE METHODS

M. A. Mabayoje, A. O. Balogun*, A. O. Bajeh and B. A. Musa
Department of Computer Science, University of Ilorin, Kwara State, Nigeria

*Corresponding author: Balogun.ao1@unilorin.edu.ng

Received: October 18, 2017 Accepted: July 19, 2018

Abstract: Software defect prediction is the process of locating defective modules in software. It facilitates testing efficiency

and consequently software quality. It enables a timely identification of fault-prone modules. The use of single

classifiers and ensembles for predicting defects in software has been met with inconsistent results. Previous

analysis say ensemble are often more accurate and are less affected by noise in datasets, also achieving lower

average error rates than any of the constituent classifiers. However, inconsistencies exist in these various

experiments and the performance of learning algorithms may vary using different performance measures and under

different circumstances. Therefore, more research is needed to evaluate the performance of ensemble algorithms in

software defect prediction. Adding feature selection reduces data sets with fewer features and improves the

classifiers and ensemble performance over the datasets. The goal of this paper is to assess the efficiency of

ensemble methods in software defect prediction using feature selection. This study compares the performance of

four ensemble algorithms using 11 different performance metrics over 11 software defect datasets from the NASA

MDP repository. The results indicate that feature selection and use of ensemble methods can improve the

classification results of software defect prediction. Bagged ensemble models have the best results. In addition,

Voting and Stacking also performed better than individual base classifiers. In terms of single classifier, SMO

performs best as it outperformed Decision Tree (J48), MLP, and KNN with and without feature selection. Thus, it

can be derived that feature selection can help improve the accuracy of both individual classifiers and ensemble

methods by removing noisy and inconsistent features in the datasets.

Keywords: Classification, dataset, ensemble, feature selection, software defect prediction

Introduction

Software engineering is an engineering discipline that is

concerned with all aspects of producing software from the

early stages of software specification through to maintaining

the system after it has gone into use (Sommerville, 2013). It

can also be defined as the application of a systematic,

disciplined, quantifiable approach to the development,

operation, and maintenance of software (Fenton and Bieman,

2014). In any area of software engineering, errors are

sometimes inescapable and these errors mostly result into

defects and failures in the software. Usually during the

development process, software defects are discovered during

software testing (Wohlin et al., 2012).

A software defect is an error or flaw in a software program or

system that causes the production of unexpected result

(Malhotra, 2015). A software defect can also be the case when

the final software product does not meet the customer

requirement or user expectation (Wahono, 2015). Defects

increase the cost of software development and decrease the

overall quality of the software product.

Previous studies illustrate that ensemble methods, a

combination of classifiers using some mechanisms, are

superior to using single classifiers in software defect

prediction (Laradji et al., 2015, Akintola et al., 2018).

However, other works indicated that classifiers’ performances

may vary in terms of different performance measures and

under different circumstances (Balogun et al., 2015, Ameen et

al., 2016). Furthermore, there are many ways to construct

ensembles of classifiers for classification processes but

caution must be exercised in terms of the overhead cost

usually incurred when considering ensemble methods. There

are many other ways of developing ensembles but how to pick

the best ensemble methods for software defect prediction has

not been fully ascertained (Peng et al., 2011). The aim of this

study is targeted at evaluating the performance of ensemble

methods and classification models with and without feature

selection.

Materials and Methods

Classification models

SMO is a simple and proficient algorithm for solving the

quadratic programming (QP) problem arising in support

vector machines (SVM) (Keerthi and Gilbert, 2002). SMO

solves the SVM QP problem by segmenting it into QP sub-

problems and solving the smallest possible optimization

problem, involving two Lagrange multipliers at each step

(Platt, 1998). Dissimilar to the past strategies, SMO chooses

to solve the smallest possible optimization problem at every

step and it chooses two Lagrange multipliers to jointly

optimize and finds the optimal values for these multipliers

(Platt, 1998).

Multi-layer Perceptron Networks (MLP) are feed-forward

artificial neural networks which is a famous model for

machine learning (Kawam and Mansour, 2012). MLP was

developed to replicate learning and generalization abilities of

humans with an attempt to model the functions of biological

neural networks and they have many potential applications in

the areas of Artificial Intelligence (AI) and Pattern

Recognition (PR) (Roy et al., 2005).

Instance Based Knowledge (IBK) or K-Nearest Neighbor

classification classifies instances based on their similarities

(Adeniyi et al., 2016). It is a type of Lazy learning where the

function is only approximated locally and all computation is

deferred until classification (Patra and Prasad, 2013). An

object is classified by a majority of its neighbors. K is always

a positive integer and the neighbors are selected from a set of

objects for which the correct classification is known (Patra

and Prasad, 2013).

J48 is a classification algorithm that belongs to the category of

decision trees. Decision trees discover the way the attribute

vectors behave for various instances (Kaur and Chhabra,

2014). It is a tree in which each internal node corresponds to a

decision, with a sub tree at these nodes for each possible

outcome of the decision and the possible solutions of the

problem correspond to the paths from the root to the leaves of

the decision tree (Balogun et al., 2015).

Supported by

http://www.ftstjournal.com/
mailto:Balogun.ao1@unilorin.edu.ng

Efficiency of Ensemble Methods in Software Defect Prediction

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 518 – 522

519

Ensemble models

In recent times, the use of ensembles has become prominent

and it has been applied to various fields including machine

learning, pattern recognition and data mining (Akintola et al.,

2018, Ameen et al., 2016, Peng et al., 2011). In contrast to

learning approaches that construct one learner from a training

data, ensemble methods combines a set of learners for data

analysis. Ensemble learning is also called committee based

learning or learning multiple classifier system (Laradji et al.,

2015). Several machine learning algorithms generate a single

model (e.g. a decision tree or neural network), ensemble

methods combine multiple models. Actually, ensemble

methods are appealing mainly because they are able to boost

weak learners to make accurate prediction (Zhou, 2012). A

weak learner can also be called a single or base learner.

Ensemble learners are machine learning methods that leverage

the efficiency of multiple models to achieve better accuracy

than any of the individual models could on their own (Zhou,

2012).

Boosting

Boosting is an ensemble learning technique. The term

boosting refers to a family of algorithms that are able to

convert weak learners to strong learners. Instinctively, a frail

learner is quite recently marginally superior to anything

irregular figure, while a solid learner is near flawless

execution (Zhou, 2012, Rokach, 2010). In boosting, however,

weights of training instances change in each iteration to force

learning algorithms to emphasize on instances that were

predicted incorrectly (Dietterich, 2000). Variants of boosting

technique includes Adaboost and LogitBoost (Zhou, 2012)

Bagging

The name Bagging came from the abbreviation of Bootstrap

Aggregating. As the name implies, the two ingredients of

boosting are bootstrap and aggregation. Bagging adopts the

bootstrap distribution for generating different base learners

(that is, it applies bootstrap sampling to obtain the data

subsets for training the base classifiers) (Dietterich, 2000).

Bagging combines multiple outputs of a learning algorithm by

taking a plurality vote to get an aggregated single prediction

(Dietterich, 2000). The multiple outputs of a learning

algorithm are generated by randomly sampling with

replacement of the original training dataset and applying the

predictor to the sample (Peng et al., 2011).

Stacking

Stacking is a meta-learning technique. Meta-learning means

learning from the classifiers produced by the creators and

from the classifications of these classifiers on training data

(Rokach, 2010). Stacking is a general procedure where a

learner is trained to combine the individual learners. Here, the

individual learners are called the first-level learners, while the

combiner is called the second-level learner, or meta-learner

(Zhou, 2012). Stacking is a technique for achieving the

highest generalization accuracy (Rokach, 2010). Unlike

bagging and boosting, stacking can be applied to combine

different types of learning algorithms (Peng et al., 2011). In

stacking, each base learner, also called “level 0” model,

produces a class value for each instance then the predictions

of level-0 models are then fed into the next level model which

combines them to form a final prediction (Witten et al., 2005)

Voting

This is an ensemble algorithm that works on nominal output

(Zhou, 2012). Like stacking, voting also combines a series of

classifiers together to perform the classification task. In

voting, the combined classifiers vote for a class label.

Feature selection technique

Feature selection is a process that selects a subset of original

features. It is also known as attribute selection or reduction

(Balogun et al., 2015). It is one of the most important

techniques used in data preprocessing for data mining. Mining

on a reduced set of attributes offers benefits as it reduces the

number of attributes appearing in the extracted patterns. There

are several types of feature selection algorithms among which

is CfsSubsetEval. CfsSubsetEval evaluates the worth of a

subset of features by considering the individual predictive

ability of each feature along with the degree of redundancy

between them, subsets of features that are highly correlated

with the class while having low inter-correlation are preferred

(Witten et al., 2005). This feature selection algorithm like

other feature selection algorithm works together with a search

algorithm that guides the generation of feature subsets. There

are various search algorithms that can be used and they

include best first search algorithm, Genetic search algorithm

and Greedy step wise algorithm, etc.

Several studies have been carried out on software defect

prediction; this section presents a review of studies involving

defect prediction, feature selection, and ensemble methods.

Numerous predictive tools have been constructed till now to

recognize the defects in software modules using machine

learning and statistical approaches. Various Data Mining

approaches such as Decision Trees (DT), Bayesian Belief

Network (BBN), Artificial Neural Network (ANN), SVM and

clustering are some techniques which are generally used to

predict defects in software. A defect prediction model based

on an enhanced Multilayer Perceptron Neural Network

technique using data mining is proposed and explored in

(Gayathri and Sudha, 2014). In which comparative analysis of

modeling of defect proneness predictions using dataset of

different metrics from NASA MDP (Metrics Data Program)

was performed and their results indicated that Multi-Layer

Perceptron improves the efficiency of prediction.

Feature selection has been used by various studies. Rodriguez

et al. (2007) applied feature selection with three filter models

and three wrapper models to five software engineering data

sets. They concluded that the reduced data sets maintained the

prediction capability with fewer attributes than the original

data sets. Ensembles have also been applied to various diverse

fields. Viola and Jones (2004) proposed a general object

detection framework by combining Adaboost with cascade

architecture. Huang et al. (2000) designed ensemble

architecture for pose-invariant face recognition, particularly

for recognizing faces with in-depth rotations. Ameen et al.

(2016) worked on Heterogeneous Ensemble Methods Based

on Filter Feature Selection. They studied the effects of feature

selection on ensemble methods and found out that feature

selection before classification processes improves

classification accuracy. However, these studies did not

consider software defect datasets. Laradji et al. (2015)

proposed ensemble learning on software defect dataset based

on feature selection. They indicated that greedy forward

selection together with average probability ensemble (APE)

performed well in SDP than other methods. However, they

only consider Average Probability Ensemble as there are other

methods of ensemble arrangement. Also, their study was

based on Support Vector Machine (SVM) classifier and

Random Forest which are not the only classification

algorithms that can be to predict software defects (Rathore

and Kumar, 2017).

Based on the aforementioned, this study looks to investigate

the performance of ensemble methods (Bagging, Boosting,

Stacking and Voting) in software defects prediction based on

greedy stepwise search feature selection method. This work is

unique as the proposed method is based on four different

ensemble methods, four heterogeneous classification

algorithms and a multi-variate feature selection based on

greedy stepwise search method.

Methods

The experiment is aimed at comparing single classifiers and

ensemble methods for software defect prediction with and

http://www.ftstjournal.com/

Efficiency of Ensemble Methods in Software Defect Prediction

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 518 – 522

520

without feature selection. The following paragraphs define the

datasets, discuss the experimental design and present the

results.

Data sources

The datasets used in this study are 11 public-domain software

defect datasets provided by the National Aeronautics Space

Administration (NASA) Facility Metrics Data Program

(MDP) repository. The brief descriptions of these MDP

datasets are provided below.

I. AR1: This dataset is from an embedded software in a

white-goods product implemented in C, it consists of

121 instances, 29 static attributes.

II. AR3: This dataset contains 30 attributes and 63

instances.

III. CM1: This dataset is from a science instrument written

in a C code with approximately 20 kilo-source lines of

code (KLOC). It contains 498 instances and 22

attributes.

IV. KC1: This dataset is a system implementing storage

management for receiving and processing ground data

written in C++. it contains 2109 instances and 22

attributes.

V. KC2: This dataset is a system implementing science

data processing written in C++. It contains 22 attributes

and 522 instances.

VI. KC3: This dataset is about the collection, processing,

and delivery of satellite metadata. It is written in Java

with 18 KLOC, 40 attributes and has 458 instances.

VII. MC2: This dataset contains 40 attributes and 161

instances.

VIII. MW1: This dataset is about a zero-gravity experiment

related to combustion written in C code containing 8

KLOC with 403 modules.

IX. PC1: This dataset is a flight software from an earth

orbiting satellite that is no longer operational. It

contains 40 KLOC of C code with 1107 modules and 22

attributes.

X. PC3: This dataset is a flight software from an earth

orbiting satellite that is currently operational. It has 40

KLOC of C code with 1563 instances.

XI. PC4: This dataset is a flight software from an earth

orbiting satellite that is currently operational. It has 36

KLOC of C code with 1458 modules.

Performance measures

There are various measures for judging the efficiency of a

classifier. Commonly used performance measures in software

defect classification are accuracy, precision, recall, F-

measure, AUC, and Mean Absolute Error (Challagulla et al.,

2008). The definition of measures used in this study is

described below.

i. Accuracy: Accuracy is the percentage of correctly

classified instances (Jaiwei and Kamber, 2006). It is

one of the widely used measures.

Accuracy =

TNFNFPTP

TPTN





ii. True positive (TP) rate: TP is the number of correctly

classified fault-prone modules. TP rate measures how

well a classifier can recognize fault-prone modules. It

also referred to as sensitivity measure.

TP rate =
TNTP

TP



iii. False positive (FP) rate: FP rate measures the

percentage of non fault-prone modules that were

incorrectly classified.

FP rate =

TNFP

FP



iv. Precision: This is the number of classified fault-prone

modules that actually are fault-prone modules.

Precision =

FPTP

TP



v. Recall: This is the percentage of fault-prone modules

that are correctly classified.

Recall =
FNTP

TP



vi. F-measure: It is the harmonic mean of precision and

recall.

F-measure =
recallprecision

recallprecision



**2

vii. AUC: also known as Area under the ROC (Receiver

Operating Characteristics) curve which shows the

tradeoff between TP rate and FP rate (Jaiwei and

Kamber, 2006).

viii. PRC: also known as Area under the Precision-Recall

Curve (PRC) is a single-value measure that originated

from the area of information retrieval (Jaiwei and

Kamber, 2006). The area under the PRC ranges from 0

to 1.

ix. Kappa Statistics: This performance measure estimates

the relationship between the members of an ensemble

in multi-classifiers system (Kuncheva, 2004).

x. Mean Absolute Error: This measures how much the

predictions deviate from the true probability.

xi. Relative Mean Squared Error: it stands for root mean

square value, it measures how much error there is

between two datasets comparing a predicted value and

an observed or known value.

Experimental procedure

This study selects 4 classifiers to build ensembles. They

represent three categories of classifiers (i.e. functions, rules

and trees) and were implemented in eclipse by building a path

to Waikato Environment for Knowledge Analysis (WEKA)

library.

For functions category, Sequential Minimal Optimization

(SMO) and Multilayer Perceptron (MLP) were selected. For

Rules category, K-Nearest Neighbor (KNN) was selected. For

Trees category, Decision tree (J48) was selected. This study

uses four popular ensemble methods (i.e. boosting, bagging,

stacking, and voting) and evaluates performance on software

defect datasets gotten from National Aeronautics and Space

Administration (NASA) Metric Data Program (MDP)

repository. For boosting, this project focuses on Adaboost.

Adaboost is the abbreviation for adaptive boosting algorithm

because it adapts to the errors returned by classifiers from

previous iterations (Zhou, 2012).

The feature selection technique used in this research work is

CfsSubsetEval. It is a multivariate filter-based feature

selection algorithm. This works adopts the greedy stepwise

algorithm as the search method to be used with CfsSubsetEval

feature selection algorithm. Greedy stepwise algorithm

searches greedily through the space of attribute subsets

(Witten et al., 2005).

As presented in Fig. 1, the experimental process starts with

dividing the software defects datasets in to training and testing

dataset as it has been used in other studies (Akintola et al.,

2018; Laradji et al., 2015; Yu et al., 2017). The training

http://www.ftstjournal.com/

Efficiency of Ensemble Methods in Software Defect Prediction

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 518 – 522

521

dataset will be pre-processed using the multivariate feature

selection method based on greedy stepwise search method.

Labani et al. (2018) reported that multivariate filter methods

are good choice for fast and reliable feature selection method.

The pre-processed dataset will be trained both on ensemble

methods and individual classification algorithm based on 10-

fold cross validation. Predictive models generated from both

the ensemble methods (Bagging, Boosting, Stacking and

Voting) and the individual classifiers (SMO, MLP, J48 and

KNN) will be tested based on performance metrics in Section

4.2. The parameters of the classifiers are optimized as

proposed by Tantithamthavorn et al. (2017). The performance

of the ensemble methods and the individual classifiers will be

analyzed with or without the deployment of feature selection.

This process is in line with the objective of this study of

investigating the impact of feature selection and ensemble

methods in software defect prediction.

Fig. 1: Experimental process architecture

Results and Discussion

The Tables present the average of the classification of all

learning models used over the 11 datasets divided into training

and test datasets. Table 1 presents the results of the learning

models without performing attribute reduction while the Table

2 presents the results of the learning models with attribute

reduction.

Table 1 presents the averaged results of the

algorithms/ensembles without feature selection. The results

shows that, in terms of accuracy, Bagged J48 achieves the

best results followed by SMO and Boosted J48, in terms of FP

rate, SMO achieves the best result followed by Bagged SMO

and Boosted SMO. In terms of TP rate, Bagged J48 performs

best followed by SMO and Boosted J48, in terms of Precision,

boosted J48 performs best followed by Boosted MLP and

Bagged J48, in terms of Recall, Bagged J48 achieves the best

result followed by SMO and Boosted J48, in terms of F-

Measure, Boosted J48 achieves the best results followed by

Bagged J48 and Boosted MLP, in terms of ROC, Voting

achieves the best results followed by Bagged J48 and Bagged

MLP, in terms of PRC, Voting achieves the best results

followed by Bagged J48 and Boosted J48. With this

observation, it can be proposed that ensemble algorithms

perform better than single classifiers.

Table 2 presents the average results of the

algorithms/ensembles used with feature selection. The

following observations can be made. In terms of accuracy,

Bagged J48 achieves the best results followed by Bagged

KNN and Bagged MLP which produce the same result. In

terms of FP rate, Bagged SMO achieves the best result

followed by SMO and Boosted SMO. In terms of TP rate,

Stacking performs best followed by Voting and SMO. In

terms of Precision, Boosted J48 performs best followed by

Stacking and Voting. In terms of Recall, Stacking achieves the

best result followed by Voting and SMO. In terms of F-

measure, Stacking achieves the best results followed by

Bagged MLP and Voting. In terms of ROC, Voting achieves

the best results followed by Bagged J48 and Bagged MLP. In

terms of PRC, Bagged MLP achieves the best results followed

by Bagged J48 and MLP. With this observation, it can also be

proposed that ensemble algorithms perform better than single

classifiers.

Comparing the respective ensemble models from Table 1 and

Table 2, it shows that feature selection enhanced the results of

the ensemble models. The percentage of accuracy for the

ensemble methods and the individual classifiers with feature

selection is better than that with no feature selection. Same is

observed with the precision, recall and the FP rate for the

ensemble methods with feature selection is lower and better.

Table 1: Average result of classifiers performance (%) with feature Selection
performance

measures
SMO J48 KNN MLP

Boosted

SMO

Boosted

J48

Boosted

KNN

Boosted

MLP

Bagged

SMO

Bagged

J48

Bagged

KNN

Bagged

MLP

Stackin

g
Voting

Correctly classified 87.78 87.51 87.18 86.89 86.17 85.31 88.07 87.59 88.20 89.27 88.37 88.37 88.24 87.93

Incorrectly classified 12.22 12.57 17.01 13.12 12.84 14.12 16.97 13.57 12.25 13.35 16.62 19.52 11.76 12.07
Kappa statistics 9.99 20.78 22.14 21.68 15.58 25.10 23.10 24.13 8.43 19.35 22.34 22.71 21.97 18.54

Mean absolute error 12.22 17.90 17.56 17.00 18.23 15.27 17.46 18.08 12.53 17.33 17.58 18.02 18.17 16.25
Root mean square error 34.23 32.25 40.25 31.77 31.24 34.01 40.32 33.66 33.75 31.05 34.54 31.20 30.95 30.77
FP rate 80.46 68.81 61.16 68.85 75.08 63.81 60.05 64.84 81.08 69.81 62.05 67.87 70.49 73.75

TP rate 87.78 87.43 82.99 86.88 87.17 85.87 83.03 86.44 87.75 86.65 83.37 86.80 88.24 87.93

Precision 82.29 85.16 82.91 83.91 82.41 85.97 83.08 84.26 81.33 84.34 83.55 84.71 85.54 84.50
Recall 87.78 87.43 82.99 86.88 87.17 85.87 83.03 86.44 87.75 86.65 83.37 86.80 88.24 87.93

F- measure 83.06 84.08 82.75 84.52 83.77 83.81 82.86 84.62 83.02 84.37 82.85 84.67 85.15 84.65

ROC Area 53.65 64.14 66.16 77.12 73.76 74.16 62.14 70.61 57.70 79.25 73.94 78.04 62.68 80.09
PRC Area 79.48 82.54 82.23 87.81 86.14 85.68 80.96 85.55 81.54 88.16 86.33 88.53 83.17 85.10

http://www.ftstjournal.com/

Efficiency of Ensemble Methods in Software Defect Prediction

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 518 – 522

522

Table 2: Average result of classifiers performance (%) without feature selection
Performance

measures
SMO J48 KNN MLP

Boosted

SMO

Boosted

J48

Boosted

KNN

Boosted

MLP

Bagged

SMO

Bagged

J48

Bagged

KNN

Bagged

MLP
Stacking Voting

Correctly classified 87.36 86.99 85.23 86.83 86.53 87.24 84.44 86.69 87.06 87.58 85.48 86.12 85.49 87.02

Incorrectly classified 12.64 13.01 14.77 13.17 13.47 12.76 15.56 13.31 12.94 12.42 14.52 13.88 14.51 12.98

Kappa statistics 9.23 24.43 27.38 27.43 15.97 33.38 26.71 29.25 9.79 26.31 27.74 24.18 15.87 17.59

Mean absolute error 13.43 16.13 15.91 16.23 18.17 13.43 15.65 16.91 12.85 16.47 16.52 16.97 19.27 15.28

Root mean square error 34.63 33.55 36.45 32.97 32.34 32.39 36.87 32.98 33.72 29.50 32.78 31.10 32.96 30.09

FP rate 80.28 64.39 58.48 64.59 72.77 54.11 57.15 60.87 79.45 62.98 57.95 64.85 70.83 72.23

TP rate 87.35 86.99 76.37 86.84 86.53 87.24 84.43 86.69 87.05 87.60 85.47 86.13 85.48 87.00

Precision 82.75 84.41 83.80 85.79 83.16 86.28 83.64 85.42 82.56 85.25 84.04 84.01 81.65 82.66

Recall 87.35 86.99 85.23 86.84 86.53 87.24 84.43 86.69 87.05 87.60 85.47 86.13 85.48 87.00

F- measure 82.85 85.18 84.43 85.05 83.39 86.63 83.95 85.31 82.75 85.96 84.66 84.33 82.69 84.12

Roc Area 53.55 68.06 66.81 76.15 71.83 80.55 63.64 72.25 60.09 80.95 75.95 78.29 63.90 81.37

Prc Area 79.35 84.39 82.45 87.85 84.65 89.30 82.50 85.88 82.12 89.58 87.38 88.25 83.11 90.21

Conclusions and Future Work
Though Some studies have reported that the use of ensembles is

often more accurate than using single classifiers in the task of

defect prediction, variations still exist and the efficiency of

learning algorithms may vary using different performance

measures and under different circumstances (Peng et al., 2011).

Therefore, more research is needed to improve our understanding

about the performance of ensemble algorithms in software defect

prediction. Observing that results using different performance

measures over different datasets. The use of feature selection can

help improve the accuracy of classifiers by removing noisy and

inconsistent features. This work can be extended by introducing

Multi-Criteria Decision Methods (MCDM) to validate the best

approach considering selected evaluation metrics.

References
Ahmad AK & Nashat M 2012. Metaheuristic optimization

algorithms for training artificial neural networks. Int. J.

Comp. & Information Techn., 1(2): 1 – 6.

Akintola AG, Balogun AO, Lafenwa-Balogun FB & Mojeed HA

2018. Comparative analysis of selected heterogeneous

classifiers for software defects prediction using filter-based

feature selection methods. FUOYE J. Engr. & Techn., 3(1):

134 – 137.

Ameen AO, Balogun AO, Usman G & Fashoto SG 2016.

Heterogenous ensemble methods based on filter feature

selection. Computing, Information Sys., Devt. Informatics &

Allied Res. J., 7(4): 63 – 78.

Aruna S, Dilsha D, Radhika R & Swathi JN 2016. Cost sensitive

classification and feature selection for software defect

prediction. Int. J. Advanced Res. Comp. Sci. & Software

Engr., 6(4): 1 – 2.

Asha GK, Jayaram MA & Manjunath AS 2010. Feature subset

selection problem using wrapper approach in supervised

learning. Int. J. Comp. Applic., 1(7): 1 – 2.

Bauer E & Kohavi R 1999. An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants.

Machine Learning, 36(1/2): 105–139.

Breiman L 1994. Bagging Predictors, Technical Report,

Department of Statistics, University of California, Berkeley,

USA.

Dietterich TG 2009. Ensemble Methods in Machine Learning.

First International Workshop on Multiple Classifier

Systems, pp. 1–15.

Freund Y & Schapire R 1996. Experiments with a new Boosting

Algorithm. In: Proceedings of the Thirteenth International

Conference on Machine Learning, pp. 148-156.

Gaganjot K & Amit C 2014. Improved J48 classification

algorithm for the prediction of diabetes. Int. J.

109csComputer Applic., 98(22): 1-5.

Gayathri M & Sudha A 2014. Software Defect Prediction System

using Multilayer Perceptron Neural Network with Data

Mining. Int. J. Recent Techn. and Engr., 3: 54-59.

Huang FJ, Zhou H, Zhang J & Chen T 2000. Pose invariant face

recognition. In Proceedings of the 4th IEEE International

Conference on Automatic Face and Gesture Recognition, pp.

245–250.

Hui 2014. Software Defect Classification Prediction Based on

Mining Software Repository, Department of Information

Technology, Uppsala University, Sweden.

IEEE 1990. IEEE Standard 610.12-1990, IEEE Standard Glossary

of Software Engineering Terminology.

Keerthi SS & Gilbert EG 2002. Convergence of a Generalized

SMO Algorithm for SVM ClassifierDesign.

Labani M, Moradi P, Ahmadizar F & Jalili M 2018. A novel

multivariate filter method for feature selection in text

classification problems. Engr. Applic. Artificial Intelligence,

70: 25-37.

Lan Sommerville 2009. Software Engineering, Boston, United

States of America.

Laradji IH, Alshayeb M & Ghouti L 2015. Software defect

prediction using ensemble learning on selected features.

Information and Software Technology, 58: 388-402.

Lessmann S, Baesens B, Mues C & Pietsch S 2008.

Benchmarking classification models for software defect

prediction: A proposed framework and novel findings. IEEE

Transactions on Software Engineering, 34(4) 485–496.

Lior 2010. Ensemble based classifiers.33, 1-39. doi

10.1007/s10462-009-9124-7.

Mardani A, Jusoh A, Zavadskas EK, Cavallaro F & Khalifah Z

2015. Sustainable and renewable energy: An overview of the

application of multiple criteria decision making techniques

and approaches. Sustainability, 7: 13947–13984.

Naheed A & Shazia U 2011. Analysis of data mining based

software defect prediction techniques. Global J. Comp. Sci.

and Techn., 11(16): 1-2.

Nikung CO 2005. Ensemble Data Mining Methods. NASA Ames

Research Center, USA.

Opitz D & Maclin R 1999. Popular ensemble methods: An

empirical study. J. Artificial Intelligence Res., 11: 169–198.

Peng JJ, Wang JQ, Wang J, Yang LJ & Chen XH 2015. An

extension of ELECTRE to multi-criteria decision-making

problems with multi-hesitant fuzzy sets. J. Information Sci.,

307: 113–126.

Peng Y, Kou G, Wang G, Wang H & Ko F 2009. Empirical

evaluation of classifiers for software risk management. Int.

J. Infor. Techn. and Decision Making, 8(4): 749–768.

Platt J 1998. Fast Training of SVMs using Sequential Minimal

Optimization.

Rathore SS & Kumar S 2017. A study on software fault

prediction techniques. Artificial Intelligence Review, 1-73.

Rodriguez D, Ruiz R, Cuadrado-Gallego J & Aguilar-Ruiz J

2007. Detecting fault modules applying feature selection to

classifiers. Proceedings of Eighth IEEE International

Conference on Information Reuse and Integration, Las

Vegas, Nevada,pp. 667–672.

Roy K, Chaudhuri C, Kundu M, NASIPURI M & Basu DK 2005.

Comparison of the multilayer perceptron and the nearest

neighbor classifier for handwritten numeral recognition. J.

Information Sci. and Engr., 21: 1-13.

http://www.ftstjournal.com/

